JAVA

Basic

public class FirstJavaProgram {
public static void main(String[] args){
System.out.println("This is my first program in java");
}//End of main
}//End of FirstJavaProgram Class

Lambda

(syntax of lambda expression)
(parameter_list) -> {function_body}

Ecmn ]'ISIM6,E[a-Bpra)KEHI/Ie He UMeeT IMapaMeTPOB, BbI BCE€ PABHO CTABUTE ITyCThbI€ CKO6KI/I, TdK >Xe, KdaK C MeTOJ0M

0e3 mapameTpoB:
() -> { for (int i = 0; i < 1000; i++) doWork(); }

Ec/u Tumbl TapaMeTpoB JIsiMOZia-BbIpayKeHUST MOYKHO BBIBECTH, MOYKHO OTMYCTHUTh UX. Harpumep,
Comparator<String> comp
= (firstStr, secondStr) // Same as (String firstStr, String secondStr)
-> Integer.compare(firstStr.length(), secondStr.length());

3/ecb KOMITUISITOP MOKET CZieJaTh BbIBOJ, UTO firstStr u secondStr A0/DKHBI ObITH CTPOKAMU, TIOTOMY UTO
nsimb/ja-BhIpa’keHre TIPUCBAaBaeTCsl KOMIIapaTtopy CTPoK. (Mbl TOCMOTPUM Ha 3TO MpHCBarBaHKe TTOBHUMATe/IbHee
To35Ke.)

Eciu MeToz iMeeT OJjH TapaMeTp BbIBOAWMOTO THIIA, Bbl MOXKETe JJa’Ke OIMyCTUTh CKOOKH:
EventHandler<ActionEvent> listener = event ->
System.out.println("The button has been clicked!");
// Instead of (event) -> or (ActionEvent event) ->

BrI HUKOI'ld HE YKA3bIBA€TE THUIT Pe€3y/IbTdTad J'IHM6'E[8-BBIPEDKEHI/I$[. OTO BCer/ia BBIACHAETCA M3 KOHTEKCTd.

Hariprimep, BeipakeHUe
(String firstStr, String secondStr) -> Integer.compare(firstStr.length(), secondStr.length())

Anonymous inner class

(HelloWorld is an interface declared before)
HelloWorld frenchGreeting = new HelloWorld() {
String name = "tout le monde";
public void greet() {
greetSomeone("tout le monde");

public void greetSomeone(String someone) {

name = someone;
System.out.println("Salut " + name);

};
Template

A generic type is a generic class or interface that is parameterized over types. The following Box class will be
modified to demonstrate the concept.

A generic class is defined with the following format:

class name<T1, T2, ..., Tn> { /* ... */ }

example

public class Box<T> {
// T stands for "Type"
private T t;



public void set(T t) { this.t = t; }
public T get() { return t; }

To reference the generic Box class from within your code, you must perform a generic type invocation, which
replaces T with some concrete value, such as Integer:

Box<Integer> integerBox;

In Java SE 7 and later, you can replace the type arguments required to invoke the constructor of a generic class with
an empty set of type arguments (<>) as long as the compiler can determine, or infer, the type arguments from the
context. This pair of angle brackets, <>, is informally called the diamond. For example, you can create an instance
of Box<Integer> with the following statement:

Box<Integer> integerBox = new Box<>();

To declare a bounded type parameter, list the type parameter's name, followed by the extends keyword, followed by
its upper bound, which in this example is Number. Note that, in this context, extends is used in a general sense to

mean either "extends" (as in classes) or "implements" (as in interfaces).
public class NaturalNumber<T extends Integer> {

BUT in general..

Inheritance

public class MountainBike extends Bicycle {..

Interface

class Demo implements MyInterface {..

Virtual
every non-static method in JAVA is by default virtual method except final and private methods. The methods
which cannot be inherited for polymorphic behavior is not a virtual method.

Abstract vlass VS interface

Abstract Class Interface

1 An abstract class can extend only one class or one | An interface can extend any number of
abstract class at a time interfaces at a time

) An abstract class can extend another concrete An interface can only extend another
(regular) class or abstract class interface

3 An abstract class can have both abstract and An interface can have only abstract
concrete methods methods
In abstract class keyword “abstract” is mandatory to In an interface keyword “abstract” is

4 optional to declare a method as an
declare a method as an abstract

abstract

5 An abstract class can have protected and public An interface can have only have public
abstract methods abstract methods

6 An abstract class can have static, final or static final | interface can only have public static
variable with any access specifier final (constant) variable



https://beginnersbook.com/2013/05/java-access-modifiers/

